finite cryptosystem - definizione. Che cos'è finite cryptosystem
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è finite cryptosystem - definizione

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

Goldwasser–Micali cryptosystem         
ASYMMETRIC KEY ENCRYPTION ALGORITHM
Goldwasser-Micali; Goldwasser-Micali encryption; Goldwasser-Micali cryptosystem; Goldwasser-Micali encryption scheme
The Goldwasser–Micali (GM) cryptosystem is an asymmetric key encryption algorithm developed by Shafi Goldwasser and Silvio Micali in 1982. GM has the distinction of being the first probabilistic public-key encryption scheme which is provably secure under standard cryptographic assumptions.
Finite morphism         
In algebraic geometry, a finite morphism between two affine varieties X, Y is a dense regular map which induces isomorphic inclusion k\left[Y\right]\hookrightarrow k\left[X\right] between their coordinate rings, such that k\left[X\right] is integral over k\left[Y\right]. This definition can be extended to the quasi-projective varieties, such that a regular map f\colon X\to Y between quasiprojective varieties is finite if any point like y\in Y has an affine neighbourhood V such that U=f^{-1}(V) is affine and f\colon U\to V is a finite map (in view of the previous definition, because it is between affine varieties).
Finite element method         
  • A function in <math>H_0^1,</math> with zero values at the endpoints (blue), and a piecewise linear approximation (red)
  • (c) The computed solution, <math>u(x, y)=1-x^2-y^2.</math>
  • (b) The [[sparse matrix]] ''L'' of the discretized linear system
  • Solving the two-dimensional problem <math>u_{xx}+u_{yy}=-4</math> in the disk centered at the origin and radius 1, with zero boundary conditions.<br />(a) The triangulation.
  • url=https://ris.utwente.nl/ws/files/6153316/CMBBE2014-Hamid-Submitted.pdf}}</ref>
  • A piecewise linear function in two dimensions
  • alt=
  • alt=
NUMERICAL METHOD FOR SOLVING PHYSICAL OR ENGINEERING PROBLEMS
Finite element analysis; Finite Element Analysis; Finite elements; Finite element; Finite Element Method; Engineering treatment of the finite element method; Finite element solver; Finite element meshing; Finite element problem; Engineering treatment of the Finite Element Method; Finite element methods; Finite difference method based on variation principle; Finite elements analysis; Finite-element method; Finite-element analysis; Finite-element methods; Nonlinear finite element analysis
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

Wikipedia

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.